题目内容

【题目】如图1.直线AD∥EF,点BC分别在EFAD上,∠A=∠ABCBD平分∠CBF

1)求证:AB⊥BD

2)如图2BG⊥AD于点G,求证:∠ACB=2∠ABG

3)在(2)的条件下,如图3CH平分∠ACBBG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)

【答案】1)见解析;(2)见解析;(3)∠BHC=90°+∠α.

【解析】

1)根据平行线的性质以及角平分线的定义,即可得到ABBD

2)根据BGADADEF,可得∠FBG=AGB=90°,进而可得∠ABG=DBF,根据EFAD,即可得到∠ACB=CBF=2DBF=2ABG

3)根据平行线的性质以及角平分线的定义可得∠ABG=D=∠α,再根据∠HGC=90°即可得到∠BHC=HGC+ACH=90°+∠α.

解:(1)∵ADEF,

∴∠ABE=A=ABC,

又∵BD平分∠CBF,

∴∠CBD=FBD,

∴∠ABD=(∠CBE+CBF=×180°=90°,

ABBD;

2)∵BG⊥AG,

∴∠FBG=AGB=90°,

∵∠ABD=90°,

∴∠ABG=DBF,

EFAD,

∴∠ACB=CBF=2DBF=2ABG

3)∵ ADEF,

∴∠D=DBF,

∴∠ACB=2DBF=2D,

∴∠D=ACB,

CH平分∠ACB,

∴∠ACH=∠ACB,

∴∠ACH=D,

∵∠ABG=D=α,

∴∠ACH=α,

BGGC,

∴∠HGC=90°,

∴∠BHC=HGC+ACH=90°+∠α.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网