题目内容
【题目】如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求证:AB⊥BD;
(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;
(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)
【答案】(1)见解析;(2)见解析;(3)∠BHC=90°+∠α.
【解析】
(1)根据平行线的性质以及角平分线的定义,即可得到AB⊥BD;
(2)根据BG⊥AD,AD∥EF,可得∠FBG=∠AGB=90°,进而可得∠ABG=∠DBF,根据EF∥AD,即可得到∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)根据平行线的性质以及角平分线的定义可得∠ABG=∠D=∠α,再根据∠HGC=90°即可得到∠BHC=∠HGC+∠ACH=90°+∠α.
解:(1)∵AD∥EF,
∴∠ABE=∠A=∠ABC,
又∵BD平分∠CBF,
∴∠CBD=∠FBD,
∴∠ABD=(∠CBE+∠CBF)=×180°=90°,
∴AB⊥BD;
(2)∵BG⊥AG,
∴∠FBG=∠AGB=90°,
∵∠ABD=90°,
∴∠ABG=∠DBF,
∵EF∥AD,
∴∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)∵ AD∥EF,
∴∠D=∠DBF,
∴∠ACB=2∠DBF=2∠D,
∴∠D=∠ACB,
∵CH平分∠ACB,
∴∠ACH=∠ACB,
∴∠ACH=∠D,
∵∠ABG=∠D=α,
∴∠ACH=α,
∵BG⊥GC,
∴∠HGC=90°,
∴∠BHC=∠HGC+∠ACH=90°+∠α.
【题目】养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.
分组 | A | B | C | D |
x(分钟)的范围 | 0≤x<10 | 10≤x<20 | 20≤x<30 | 30≤x<40 |
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)所抽取的七年级学生早锻炼时间的中位数落在______组内(填“A”或“B”或“C”或“D”);
(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)