题目内容

如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

(1) y=-x2+9x(0<x≤4)   (2)20 cm2

解析解:(1)∵S△PBQPB·BQ,PB=AB-AP=18-2x,BQ=x,
∴y= (18-2x)x,即y=-x2+9x(0<x≤4);
(2)由(1)知,y=-x2+9x,∴y=-
∵当0<x≤时,y随x的增大而增大,
而0<x≤4,∴当x=4时,y最大值=20,
即△PBQ的最大面积是20 cm2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网