题目内容
【题目】如图,已知直线与双曲线交于A、B两点,A点的横坐标为3,则下列结论:①k=3;②关于x的不等式的解集为或;③若双曲线上有一点C的纵坐标为6,则△AOC的面积为8;④若在轴上有一点M,轴上有一点N,且点M、N、A、C四点恰好构成平行四边形,则M、N点的坐标分别为M(2,0)、N(0,4),其中正确结论的个数( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】B
【解析】分析:①直线与双曲线交于A、B两点,A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;②根据对称性,可求得点B的坐标,结合图象,即可求得关于x的不等式的解集;③过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,又由双曲线y= (k>0)上有一点C的纵坐标为6,即可求得点C的坐标,继而求得答案;④由当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,根据平移的性质,即可求得答案.
详解:
∵直线与双曲线交于A、B两点,A点横坐标为3,
∴点A的纵坐标为:y=×3=2,
∴点A(3,2),
∴2=,
∴k=6;
①错误;
∵直线与双曲线交于A、B两点,点A(3,2),
∴B(-3,-2),
∴关于x的不等式的解集为或;
②正确;
过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,
∵双曲线y= (k>0)上有一点C的纵坐标为6,
∴把y=6代入y=得:x=1,
∴点C(1,6),
∴S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC=×(2+6)×(3-1)=8;
③正确;
如图,当MN∥AC,且MN=AC时,点M、N、A、C四点恰好构成平行四边形,
∵点A(3,2),点C(1,6),
∴根据平移的性质可得:M(2,0),N(0,4)或M′(-2,0),N′(0,-4).
④正确;
综上,正确的结论有3个,故选B.