题目内容

已知:在矩形AOBC中,OB=3,OA=2.分别以OB、OA所在直线为x轴和y轴,建立如图所示的平精英家教网面直角坐标系.若点F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=
kx
(k>0)的图象与边交于点E.
(1)直接写出线段AE、BF的长(用含k的代数式表示);
(2)记△OEF的面积为S.
①求出S与k的函数关系式并写出自变量k的取值范围;
②以OF为直径作⊙N,若点E恰好在⊙N上,请求出此时△OEF的面积S.
分析:(1)从图象上可以得到E点的纵坐标为2,代入到反比例函数的解析式求得其横坐标即可,F点的横坐标为3,代入函数解析式求得其纵坐标即可;
(2)①用K表示出CE、CF,利用S是四边形和几个三角形的面积的差表示出S即可;
②证得△AOE∽△CEF后,得到比例式,进而得到有关K的一元二次方程求得K的值代入到①中求面积即可.
解答:解:(1)AE=
k
2
BF=
k
3


(2)①依题意得:CE=AC-AE=3-
k
2

CF=BC-BF=2-
k
3

∴S=S四边形OACB-S△CEF-S△OAE-S△OBF
=6-
1
2
(3-
k
2
)
(2-
k
3
)
-
1
2
k
-
1
2
k

=-
1
12
k2+3

其中0<k<6.
②∵OF为⊙N的直径,
∴∠FEO=90°.
∵∠OAE=90°,
∴∠AOE+∠AEO=∠CEF+∠AEO=90°.
∴∠AOE=∠CEF.
∵∠OAE=∠C=90°.
∴△AOE∽△CEF
AE
AO
=
CF
CE

k
4
=
2-
k
3
3-
k
2

整理得:-3k2+26k=48,
解得:k1=
8
3
,k2=6(不合,舍去).
∴当k=
8
3
时,S=-
1
12
×(
8
3
)2+3
=
65
27
点评:本题是一道反比例函数的综合题,题目中还考查了比例式的证明及相似三角形的判定的知识,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网