题目内容
已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是( )
分析:由函数图象可得抛物线开口向下,得到a小于0,又抛物线与y轴的交点在y轴正半轴,得到c大于0,进而得到a与c异号,根据两数相乘积为负得到ac小于0,选项A错误;由抛物线的对称轴为直线x=1,得到对称轴右边y随x的增大而减小,对称轴左边y随x的增大而增大,故x大于0小于1时,y随x的增大而增大,选项B错误;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,选项C错误;由抛物线与x轴的交点为(3,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(-1,0),进而得到方程ax2+bx+c=0的两根分别为-1和3,选项D正确.
解答:解:由二次函数y=ax2+bx+c的图象可得:抛物线开口向下,即a<0,
抛物线与y轴的交点在y轴正半轴,即c>0,
∴ac<0,选项A错误;
由函数图象可得:当0<x<1时,y随x的增大而增大;
当x>1时,y随x的增大而减小,故选项B错误;
∵对称轴为直线x=1,∴-
=1,即2a+b=0,选项C错误;
由图象可得抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-1,0),
则方程ax2+bx+c=0的两根是x1=-1,x2=3,选项D正确.
故选D
抛物线与y轴的交点在y轴正半轴,即c>0,
∴ac<0,选项A错误;
由函数图象可得:当0<x<1时,y随x的增大而增大;
当x>1时,y随x的增大而减小,故选项B错误;
∵对称轴为直线x=1,∴-
b |
2a |
由图象可得抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-1,0),
则方程ax2+bx+c=0的两根是x1=-1,x2=3,选项D正确.
故选D
点评:此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,二次函数ax2+bx+c=0(a≠0),a的符合由抛物线的开口方向决定,c的符合由抛物线与y轴交点的位置确定,b的符合由a及对称轴的位置决定,抛物线的增减性由对称轴决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小.此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |