题目内容
【题目】如图在□ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B=___.
【答案】76
【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.
过F作FG∥AB∥CD,交BC于G;
则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;
∵BC=2AB,F为AD的中点,
∴BG=AB=FG=AF,
连接EG,在Rt△BEC中,EG是斜边上的中线,
则BG=GE=FG=BC;
∵AE∥FG,
∴∠EFG=∠AEF=∠FEG=52°,
∴∠AEG=∠AEF+∠FEG=104°,
∴∠B=∠BEG=180°-104°=76°.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.