题目内容
【题目】已知a、b、c为整数,且满足3+a2+b2+c2<ab+3b+2c,求的值.
【答案】解:由a、b、c均为整数,a2+b2+c2+3<ab+3b+2c,得
a2+b2+c2+3≤ab+3b+2c﹣1
∴4a2+4b2+4c2+12≤4ab+12b+8c﹣4
(4a2﹣4ab+b2)+(3b2﹣12b+12)+(4c2﹣8c+4)≤0
(2a﹣b)2+3(b2﹣4b+4)+4(c2﹣2c+1)≤0
(2a﹣b)2+3(b﹣2)2+4(c﹣1)2≤0
∴2a﹣b=0,b﹣2=0,c﹣1=0,
解得 a=1,b=2,c=1,
∴= .
【解析】由a、b、c为整数,可得应把所给不等式的右边减1,整理为用“≤”表示的形式,进而把得到的不等式整理为一边为0的形式,把另一边整理3个不含分数的完全平方式子的和的形式,让底数为0可得a,b,c的值,进而代入代数式求解即可.
【考点精析】关于本题考查的根与系数的关系,需要了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能得出正确答案.
【题目】一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下:
实验次数 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的频数 | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相应的频率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)请将表中数据补充完整,并画出折线统计图中剩余部分.
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的机会,请估计这个机会约是多少?
(3)在(2)的基础上,进一步估计:将该“車”字棋子,按照实验要求连续抛2次,则刚好使“車”字一次字面朝上,一次朝下的可能性为多少?
【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有850名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污染的频率分布表和频率分布直方图,解答下列问题:
分 组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合 计 | 50 | 1.00 |
(1)填充频率分布表的空格;
(2)补全频数直方图,并在此图上直接绘制频数分布折线图;
(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?
(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?