题目内容

【题目】已知a、b、c为整数,且满足3+a2+b2+c2<ab+3b+2c,求的值.

【答案】解:由a、b、c均为整数,a2+b2+c2+3<ab+3b+2c,得
a2+b2+c2+3≤ab+3b+2c﹣1
∴4a2+4b2+4c2+12≤4ab+12b+8c﹣4
(4a2﹣4ab+b2)+(3b2﹣12b+12)+(4c2﹣8c+4)≤0
(2a﹣b)2+3(b2﹣4b+4)+4(c2﹣2c+1)≤0
(2a﹣b)2+3(b﹣2)2+4(c﹣1)2≤0
∴2a﹣b=0,b﹣2=0,c﹣1=0,
解得 a=1,b=2,c=1,
=
【解析】由a、b、c为整数,可得应把所给不等式的右边减1,整理为用“≤”表示的形式,进而把得到的不等式整理为一边为0的形式,把另一边整理3个不含分数的完全平方式子的和的形式,让底数为0可得a,b,c的值,进而代入代数式求解即可.
【考点精析】关于本题考查的根与系数的关系,需要了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网