题目内容
【题目】△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,P为线段AB上一动点,D为BC上中点,则PC+PD的最小值为( )
A. B.3 C. D.
【答案】C
【解析】
试题分析:作D关于AB的对称点F,连接CF交AB于P,连接PD,BF,则AB垂直平分DF,于是可得PF=PD,BD=BF,即可求得∠CBF=90°,根据勾股定理即可得到结论.
解:作D关于AB的对称点F,连接CF交AB于P,则CF的长度=PC+PD的最小值,连接PD,BF,
则AB垂直平分DF,
∴PF=PD,BD=BF=BC=1,∠FBP=∠DBP,
∵△ABC为等腰直角三角形,AC=BC,
∴∠ACB=45°,
∴∠CBF=90°,
∴CF2=BC2+BF2=5,
∴CF=,
∴PC+PD的最小值是.
故选C.
练习册系列答案
相关题目