题目内容
【题目】已知二次函数y=x2-4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
【答案】(1) (2,-1) 当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大
(2) (1,0) 1
解:(1)y=x2-4x+3=x2-4x+4-4+3=(x-2)2-1,所以顶点C的坐标是(2,-1),当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大;
(2)解方程x2-4x+3=0得x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0).如图,过点C作CD⊥AB于点D.∵AB=2,CD=1,∴S△ABC=AB×CD=×2×1=1.
【解析】试题分析:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式
(1)配方后求出顶点坐标即可;
(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可.
解:(1)y=x2-4x+3=x2-4x+4-4+3=(x-2)2-1,所以顶点C的坐标是(2,-1),当x≤2时,y随x的增大而减小;当x>2时,y随x的增大而增大;
(2)解方程x2-4x+3=0得x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0).如图,过点C作CD⊥AB于点D.∵AB=2,CD=1,∴S△ABC=AB×CD=×2×1=1.
练习册系列答案
相关题目