题目内容
【题目】将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)点D为AB的中点,DE交AC于点P,DF经过点C.
(1)求∠ADE的度数;
(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
【答案】(1)30°;(2)的值不会随着α的变化而变化。.
【解析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得CD=AD=BD=AB,根据等边对等角求出∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC-∠EDF计算即可得解;
(2)根据同角的余角相等求出∠PDM=∠CDN,再根据然后求出△BCD是等边三角形,根据等边三角形的性质求出∠BCD=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CPD=60°,从而得到∠CPD=∠BCD,再根据两组角对应相等,两三角形相似判断出△DPM和△DCN相似,再根据相似三角形对应边成比例可得为定值.
试题解析:(1)由题意知: CD是Rt△ABC中斜边AB上的中线,
∴AD=BD=CD,
∵在△BCD中,BD=CD且∠B=60°,
∴△BCD是等边三角形,
∴∠BCD=∠BDC=60°,
∴∠ADE=180°-∠BDC-∠EDF=180°-60°-90°=30°
(2)的值不会随着α的变化而变化。
理由如下:∵△APD的外角∠MPD=∠A+∠ADE=30°+30°=60°,
∴∠MPD=∠BCD=60°.
∵在△MPD和△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,
∴△MPD∽△NCD,,
又∵由(1)知AD=CD,
∴∠ACD=∠A=30°,即∠PCD=30°.
在Rt△PCD中,∠PCD=30°,
∴,
∴