题目内容

【题目】抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.

(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)若射线NM交x轴于点P,且PAPB= ,求点M的坐标.

【答案】
(1)

解:y= x2+x+m= (x+2)2+(m﹣1)

∴顶点坐标为(﹣2,m﹣1)

∵顶点在直线y=x+3上,

∴﹣2+3=m﹣1,

得m=2


(2)

解:过点F作FC⊥NB于点C,

∵点N在抛物线上,

∴点N的纵坐标为: a2+a+2,

即点N(a, a2+a+2)

在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,

∴NF2=NC2+FC2=( a2+a)2+(a+2)2

=( a2+a)2+(a2+4a)+4,

而NB2=( a2+a+2)2

=( a2+a)2+(a2+4a)+4

∴NF2=NB2

NF=NB


(3)

解:连接AF、BF,

由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,

∴∠MAF=∠MFA,

∵MA⊥x轴,NB⊥x轴,

∴MA∥NB,

∴∠AMF+∠BNF=180°

∵△MAF和△NFB的内角总和为360°,

∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,

∵∠MAB+∠NBA=180°,

∴∠FBA+∠FAB=90°,

又∵∠FAB+∠MAF=90°,

∴∠FBA=∠MAF=∠MFA,

又∵∠FPA=∠BPF,

∴△PFA∽△PBF,

,PF2=PA×PB=

过点F作FG⊥x轴于点G,在Rt△PFG中,

PG= =

∴PO=PG+GO=

∴P(﹣ ,0)

设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣ ,0)代入y=kx+b,

解得k= ,b=

∴直线PF:y= x+

解方程 x2+x+2= x+

得x=﹣3或x=2(不合题意,舍去),

当x=﹣3时,y=

∴M(﹣3, ).


【解析】(1)利用配方法将二次函数整理成顶点式即可,再利用点在直线上的性质得出答案即可;(2)首先利用点N在抛物线上,得出N点坐标,再利用勾股定理得出NF2=NC2+FC2 , 进而得出NF2=NB2 , 即可得出答案;(3)求点M的坐标,需要先求出直线PF的解析式.首先由(2)的思路得出MF=MA,然后连接AF、FB,通过证明△PFA∽△PBF,利用相关的比例线段将PAPB的值转化为PF的值,进而求出点F的坐标和直线PF的解析式,即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网