题目内容
【题目】如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.
(1)以原点O为对称中心,画出与△ABC关于原点O对称的△A1B1C1 , A1的坐标是
(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2 , 试在图上画出△A2B2C2的图形.
【答案】
(1)(6,﹣1)
(2)解:如图所示,△A2B2C2即为所求作的三角形.
【解析】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);
(1)连接AO并延长至A1 , 使A1O=AO,连接BO并延长至B1 , 使B1O=BO,连接CO并延长至C1 , 使C1O=CO,然后顺次连接A1、B1、C1即可得到△A1B1C1;再根据平面直角坐标系的特点写出点A1的坐标即可;(2)根据旋转变换,找出点A、B、C绕点(﹣2,1)顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.
练习册系列答案
相关题目