题目内容
【题目】如图,在平面直角坐标系中,直线与轴交于点,与轴交点于,且,°,以为边长作等边三角形,过点作平行于轴,交直线于点,以为边长作等边三角行,过点作平行于轴,交直线于点,以 为边长坐等三角形,…,则点的横坐标是___________.
【答案】
【解析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,,A2的横坐标为, A3的横坐标为,进而得到An的横坐标为,据此可得点A10的横坐标.
解:如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,
即A1的横坐标为=,
∵°,
∴∠OB1D=30°,
∵A1B2//x轴,
∴∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,
∴∠A1B1B2=90°,
∴A1B2=2A1B1=2,
过A2作A2B⊥A1B2于B,则A1B=A1B2=1,
即A2的横坐标为+1=,
过A3作A3C⊥A2B3于C,
同理可得,A2B3=2A2B2=4,A2C=A2B3=2,
即A3的横坐标为+1+2=,
同理可得,A4的横坐标为+1+2+4=,
由此可得,An的横坐标为,
∴点A10的横坐标是,
故答案为:.
练习册系列答案
相关题目
【题目】某数学兴趣小组根据学习函数的经验,对函数的图象与性质进行了探究,下面是该小组的探究过程,请补充完整:
(1)函数的自变量的取值范围是________:
(2)列表,找出与的几组对应值:
-1 | 0 | 1 | 2 | 3 | |||
1 | 0 | 1 | 2 |
其中,_______:
(3)在平面直角坐标系中,描出以上表中对应值为坐标的点,并画出该函数的图像.