题目内容

设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC2=CF•EG.

证明:(1)连接BD,
∵四边形BCDE是正方形,
∴∠DBA=45°,∠DCB=90°,即DC⊥AB,
∵C为AB的中点,
∴CD是线段AB的垂直平分线,
∴AD=BD,
∴∠DAB=∠DBA=45°,
∴∠ADB=90°,
即BD⊥AD,
∵BD为半径,
∴AD是⊙B的切线;

(2)∵BD=BG,
∴∠BDG=∠G,
∵CD∥BE,
∴∠CDG=∠G,
∴∠G=∠CDG=∠BDG=∠BCD=22.5°,
∴∠ADQ=90°-∠BDG=67.5°,∠AQB=∠BQG=90°-∠G=67.5°,
∴∠ADQ=∠AQD,
∴AD=AQ;

(3)连接DF,
在△BDF中,BD=BF,
∴∠BFD=∠BDF,
又∵∠DBF=45°,
∴∠BFD=∠BDF=67.5°,
∵∠GDB=22.5°,
在Rt△DEF与Rt△GCD中,
∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,
∴Rt△DCF∽Rt△GED,

又∵CD=DE=BC,
∴BC2=CF•EG.
分析:(1)连接BD,由DC⊥AB,C为AB的中点,由线段垂直平分线的性质,可得AD=BD,再根据正方形的性质,可得∠ADB=90°;
(2)由BD=BG与CD∥BE,利用等边对等角与平行线的性质,即可求得∠G=∠CDG=∠BDG=∠BCD=22.5°,继而求得∠ADQ=∠AQD=67.5°,由等角对等边,可证得AD=AQ;
(3)易求得∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,即可证得Rt△DCF∽Rt△GED,根据相似三角形的对应边成比例,即可证得结论.
点评:此题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网