ÌâÄ¿ÄÚÈÝ

ÎÊÌâÇé¾³
ÒÑÖª¾ØÐεÄÃæ»ýΪa£¨aΪ³£Êý£¬a£¾0£©£¬µ±¸Ã¾ØÐεij¤Îª¶àÉÙʱ£¬ËüµÄÖܳ¤×îС£¿×îСֵÊǶàÉÙ£¿
ÊýѧģÐÍ
Éè¸Ã¾ØÐεij¤Îªx£¬Öܳ¤Îªy£¬ÔòyÓëxµÄº¯Êý¹ØϵʽΪy=2(x+
a
x
)(x£¾0)
£®
̽Ë÷Ñо¿
£¨1£©ÎÒÃÇ¿ÉÒÔ½è¼øѧϰº¯ÊýµÄ¾­Ñ飬ÏÈ̽Ë÷º¯Êýy=x+
1
x
(x£¾0)
µÄͼÏóÐÔÖÊ£®
1ÌîдÏÂ±í£¬»­³öº¯ÊýµÄͼÏó£º
x ¡­
1
4
1
3
1
2
1 2 3 4 ¡­
y ¡­ ¡­
¢Ú¹Û²ìͼÏó£¬Ð´³ö¸Ãº¯ÊýÁ½Ìõ²»Í¬ÀàÐ͵ÄÐÔÖÊ£»
¢ÛÔÚÇó¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄ×î´ó£¨Ð¡£©ÖµÊ±£¬³ýÁËͨ¹ý¹Û²ìͼÏ󣬳ýÁËͨ¹ý¹Û²ìͼÏ󣬻¹¿ÉÒÔͨ¹ýÅä·½µÃµ½£®Í¬Ñùͨ¹ýÅä·½Ò²¿ÉÒÔÇóº¯Êýy=x+
1
x
£¨x£¾0£©µÄ×îСֵ£®y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
¡Ý2
µ±
x
-
1
x
=0£¬¼´x=1ʱ£¬º¯Êýy=x+
1
x
£¨x£¾0£©µÄ×îСֵΪ2£®
½â¾öÎÊÌâ
£¨2£©½â¾ö¡°ÎÊÌâÇé¾³¡±ÖеÄÎÊÌ⣬ֱ½Óд³ö´ð°¸£®
·ÖÎö£º£¨1£©¢Ù¸ù¾ÝÇó´úÊýʽµÄÖµµÄ·½·¨½«xµÄÖµº¯ÊýµÄ½âÎöʽÇó³öÆäÖµ¾Í¿ÉÒÔÁË£®
¢Ú¸ù¾Ý¢Ù±íÖеÄÊý¾Ý»­³öº¯ÊýµÄͼÏó£¬ÔÙ½áºÏ±íÖеÄÊý¾Ý¾Í¿ÉÒÔд³öͼÏóµÄÏàÓ¦µÄÐÔÖÊ£®
£¨2£©Óɢ۵ĽáÂÛ¿ÉÒÔ°Ñx=
a
Ö±½Ó´úÈëyÓëxµÄº¯Êý¹ØϵʽΪy=2(x+
a
x
)(x£¾0)
¾Í¿ÉÒÔÇó³öÖܳ¤µÄ×îСֵ£®
½â´ð£º½â£º£¨1£©¢Ùµ±x=
1
4
ʱ£¬y=
17
4
£¬
µ±x=
1
3
ʱ£¬y=
10
3
£¬
µ±x=
1
2
ʱ£¬y=
5
2
£¬
µ±x=1¡¢2¡¢3¡¢4¡¢Ê±£¬ÔòyÖµ·Ö±ðΪ£º2£¬
5
2
£¬
10
3
£¬
17
4
£®
¡àº¯Êýy=x+
1
x
£¨x£¾0£©µÄͼÏóÈçͼ£®

¢Úµ±0£¼x£¼1ʱ£¬yËæxÔö´ó¶ø¼õС£»µ±x£¾1ʱ£¬yËæxÔö´ó¶øÔö´ó£»µ±x=1ʱº¯Êýy=x+
1
x
£¨x£¾0£©µÄ×îСֵΪ2£®

£¨2£©Óɢ۵㬵±¸Ã¾ØÐεij¤Îª
a
ʱ£¬
ËüµÄÖܳ¤×îС£¬×îСֵΪy=2(
a
+
a
a
)
=4
a
£®
µãÆÀ£º±¾ÌâÊÇÒ»µÀ¶þ´Îº¯ÊýµÄ×ÛºÏÊÔÌ⣬¿¼²éÁËÃèµã·¨»­º¯ÊýµÄͼÏóµÄ·½·¨£¬¶þ´Îº¯Êý×îÖµµÄÔËÓã®·´±ÈÀýº¯ÊýµÄͼÏóÐÔÖʵÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø