题目内容

【题目】如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是 上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是( )

A.(sinα,sinα)
B.(cosα,cosα)
C.(cosα,sinα)
D.(sinα,cosα)

【答案】C
【解析】解:过P作PQ⊥OB,交OB于点Q,
在Rt△OPQ中,OP=1,∠POQ=α,
∴sinα= ,cosα= ,即PQ=sinα,OQ=cosα,
则P的坐标为(cosα,sinα),
故选C.

过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网