题目内容

【题目】如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BEPBx轴于点E,连接PEAB于点F,设运动时间为t秒.

(1)t=2时,求点E的坐标;

(2)AB平分∠EBP时,求t的值.

(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】(1)E(5,0);(2)t=2;(3)存在;(0,)或(0,).

【解析】

(1)本题需先求出AB=AE,再求出DE=5,即可求出点E的坐标.
(2)本题需先求出CP=CB=2,即可求出t的值.
(3)本题需先证出△BCP∽△BAE,求出AE=t,再分两种情形分别求解即可解决问题;

解:(1)当t=2时,PC=2,

BC=2,

PC=BC,

∴∠PBC=45°,

∴∠BAE=90°,

∴∠AEB=45°,

AB=AE=3,

∴OE=5,

∴点E的坐标是(5,0);

(2)当AB平分∠EBP时,

PBF=45°,

则∠CBP=CPB=45°,

∴CP=CB=2,

t=2;

(3)存在,

∵∠ABE+ABP=90°,

PBC+ABP=90°,

∴∠ABE=PBC,

∵∠BAE=BCP=90°,

∴△BCP∽△BAE,

t

∵若△POE∽△EAB,

,

t1= ,t2=(舍去),

P的坐标为(0, );

当点Py轴的负半轴上时,若△POE∽△EAB,则有,无解,

若△POE∽△BAE,则有:

解得t=3+ 3﹣(舍弃)

P的坐标为(0,)或(0,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网