题目内容
【题目】如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.
(1)当t=2时,求点E的坐标;
(2)若AB平分∠EBP时,求t的值.
(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)E(5,0);(2)∴t=2;(3)存在;(0,)或(0,).
【解析】
(1)本题需先求出AB=AE,再求出DE=5,即可求出点E的坐标.
(2)本题需先求出CP=CB=2,即可求出t的值.
(3)本题需先证出△BCP∽△BAE,求出AE=t,再分两种情形分别求解即可解决问题;
解:(1)当t=2时,PC=2,
∵BC=2,
∴PC=BC,
∴∠PBC=45°,
∴∠BAE=90°,
∴∠AEB=45°,
∴AB=AE=3,
∴OE=5,
∴点E的坐标是(5,0);
(2)当AB平分∠EBP时,
∠PBF=45°,
则∠CBP=∠CPB=45°,
∴CP=CB=2,
∴t=2;
(3)存在,
∵∠ABE+∠ABP=90°,
∠PBC+∠ABP=90°,
∴∠ABE=∠PBC,
∵∠BAE=∠BCP=90°,
∴△BCP∽△BAE,
∴ ,
∴ ,
∴ t,
∵若△POE∽△EAB,
∴ ,
∴,
∴t1= ,t2=(舍去),
∴P的坐标为(0, );
当点P在y轴的负半轴上时,若△POE∽△EAB,则有,无解,
若△POE∽△BAE,则有:,
解得t=3+ 或3﹣(舍弃)
∴P的坐标为(0,)或(0,).
练习册系列答案
相关题目