题目内容
【题目】(理解新知)如图①,已知,在内部画射线,得到三个角,分别为,,,若这三个角中有一个角是另外一个角的两倍,则称射线为的“二倍角线”.
(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)
(2)若,射线为的“二倍角线”,则的大小是______;
(解决问题)如图②,己知,射线从出发,以/秒的速度绕点逆时针旋转;射线从出发,以/秒的速度绕点顺时针旋转,射线,同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为秒.
(3)当射线,旋转到同一条直线上时,求的值;
(4)若,,三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出所有可能的值______.
【答案】(1)是;(2)或或;(3)或或;(4)或.
【解析】
(1)若OC为的角平分线,由角平分线的定义可得,由二倍角线的定义可知结论;
(2)根据二倍角线的定义分三种情况求出的大小即可.
(3)当射线,旋转到同一条直线上时,,即或,或OP和OQ重合时,即,用含t的式子表示出OP、OQ旋转的角度代入以上三种情况求解即可;
(4)结合“二倍角线”的定义,根据t的取值范围分,,,4种情况讨论即可.
解:(1)若OC为的角平分线,由角平分线的定义可得,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;
(2)当射线为的“二倍角线”时,有3种情况,
①,;
②,,,;
③,,,
综合上述,的大小为或或;
(3)当射线,旋转到同一条直线上时,有以下3种情况,
①如图
此时,即,解得;
②如图
此时点P和点Q重合,可得,即,解得;
③如图
此时,即,解得,
综合上述,或或;
(4)由题意运动停止时,所以,
①当时,如图,
此时OA为的“二倍角线”,,
即,解得;
②当时,如图,
此时,,所以不存在;
③当时,如图
此时OP为的“二倍角线”,,
即
解得 ;
④当时,如图,
此时,所以不存在;
综上所述,当或时,,,三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.
【题目】某中学为了科学建设“学生健康成长工程”.随机抽取了部分学生家庭对其家长进行了主题为“周末孩子在家您关心吗?”的问卷调查,将回收的问卷进行分析整理,得到了如下的样本统计表和扇形统计图:
代号 | 情况分类 | 家庭数 |
带孩子玩并且关心其作业完成情况 | 16 | |
只关心其作业完成情况 | b | |
只带孩子玩 | 8 | |
既不带孩子玩也不关心其作业完成情况 | d |
(1)求的值;
(2)该校学生家庭总数为500,学校决定按比例在类家庭中抽取家长组成培训班,其比例为类取20%,类各取60%,请你估计该培训班的家庭数;
(3)若在类家庭中只有一个城镇家庭,其余是农村家庭,请用列举法求出在类中随机抽出2个家庭进行深度采访,其中有一个是城镇家庭的概率.