题目内容
【题目】用适当方法解下列方程:
①x2﹣2x=99
②x2+8x=﹣16
③x2+3x+1=0
④5x(x+2)=4x+8.
【答案】①x1=11,x2=﹣9;②x1=x2=﹣4;③x1=,x2=;④x1=﹣2,x2= .
【解析】
】①移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
②移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
③求出b2-4ac的值,再代入公式求出即可;
④移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
解:①x2﹣2x=99,
x2﹣2x﹣99=0,
(x﹣11)(x+9)=0,
x﹣11=0,x+9=0,
x1=11,x2=﹣9;
②x2+8x=﹣16,
x2+8x+16=0,
(x+4)2=0,
x+4=0,
x=﹣4,
即x1=x2=﹣4;
③x2+3x+1=0,
b2﹣4ac=32﹣4×1×1=5,
x=,
x1=,x2=;
④5x(x+2)=4x+8
5x(x+2)﹣4(x+2)=0,
(x+2)(5x﹣4)=0,
x+2=0,5x﹣4=0,
x1=﹣2,x2=.
练习册系列答案
相关题目
【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 | 清理养鱼网箱人数/人 | 清理捕鱼网箱人数/人 | 总支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?