题目内容

【题目】如图,在矩形ABCD中,AB=8k,BC=5k(k为常数,且k>0),动点P在AB边上(点P不与A、B重合),点Q、R分别在BC、DA边上,且AP:BQ:DR=3:2:1.点A关于直线PR的对称点为A′,连接PA′、RA′、PQ.

(1)若k=4,PA=15,则四边形PARA′的形状是
(2)设DR=x,点B关于直线PQ的对称点为B′点.
①记△PRA′的面积为S1 , △PQB′的面积为S2 . 当S1<S2时,求相应x的取值范围及S2﹣S1的最大值;(用含k的代数式表示)
②在点P的运动过程中,判断点B′能否与点A′重合?请说明理由.

【答案】
(1)正方形
(2)

解:①由题意可知,BQ=2x,PA=3x,AR=5k﹣x,BP=8k﹣3x,

∵S1=SPRA= ARAP= (5k﹣x)3x=﹣ x2+ kx,

S2=SPQB= BPBQ= (8k﹣3x)2x=﹣3x2+8kx,

由S1<S2可得,﹣ x2+ <﹣3x2+8kx,

∵x>0,

∴x取值范围为0<x< k,

∴S2﹣S1=﹣ x2+ kx=﹣ (x﹣ 2+ k2

∴当x= 时,S2﹣S1有最大值,最大值为 k2

②点B'不能与点A'重合.理由如下:如图,

假设点B'与点A'重合,则有∠APR+∠A'PR+∠B'PQ+∠BPQ=180°,

由对称的性质可得,∠A'PR=∠APR,∠B'PQ=∠BPQ,

∴∠APR+∠BPQ= ×180°=90°,

由∠A=90°可得,∠APR+∠PRA=90°,

∴∠PRA=∠BPQ,

又∵∠A=∠B=90°

∴Rt△PAR∽Rt△QBP,

,即PABP=ARQB.

∴3x(8k﹣3x)=(5k﹣x)2x,解得,x1=0(不合题意舍去),x2=2k,

又∵PA=PA',PB=PB'=PA',

∴PA=PB,

∴3x=8k﹣3x,解得x= k≠2k,

故点B'不能与点A'重合.


【解析】解:(1)∵k=4,PA=15,AP:BQ:DR=3:2:1,
∴DR=5,BC=AD=20,AR=AP=15,
∵A、A′关于PR对称,
∴RA=RA′=PA=PA′,
∴四边形PARA′是菱形,
∵∠A=90°,
∴四边形PARA′是正方形.
故答案为正方形;
(1)先证明四边形PARA′是菱形,再根据∠A=90°,可以推出四边形PARA′是正方形.(2)①分别求出S1 , S2 , 根据S1<S2 , 确定自变量取值范围,再构建S2﹣S1关于x的二次函数,根据二次函数的性质即可解决问题.
②点B'不能与点A'重合,利用反证法即可证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网