题目内容
在3,-4,5,-6这四个数中,任取两个数相乘,所得的乘积最大是( )
A. 15 B. -18 C. 24 D. -30
计算: +()﹣2+|﹣1|﹣2sin60°.
下列各图中,经过折叠能围成一个正方体的是( )
A. B. C. D.
用配方法解方程x2-2x-5=0时,原方程应变形为( )
A. (x+1)2=6 B. (x-1)2=6
C. (x+2)2=9 D. (x-2)2=9
若五个数相乘,积为负数,则其中负因数的个数为( )
A. 2 B. 0 C. 1 D. 1或3或5
商场为了促销,推出两种促销方式:
方式一:所有商品打7.5折销售:
方式二:一次购物满200元送60元现金.
(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:
方案一:628元和788元的商品均按促销方式①购买;
方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买;
方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买;
方案四:628元和788元的商品均按促销方式②购买.
你给杨老师提出的最合理购买方案是 .
(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 .
计算(3-2)×(-3)-1÷(-)的结果是( )
A. 4 B. 2 C. -2 D. -4
1米长的彩带,第1次剪去,第二次剪去剩下的,如此剪下去,剪7次后剩下的彩带长(不计损耗)为( )
A. ()6米 B. ()7米 C. ()6米 D. ()7米
如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.
(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).
①连接AP,若2AP>OQ,求m的取值范围;
②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段 NQ的长度等于 .