题目内容
【题目】如图,抛物线 与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.
(1)求线段DE的长;
(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;
(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.
【答案】(1)2;(2)直线MN∥x轴,见解析;(3)P(19,0)或(﹣17,0)
【解析】
(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析式,把对称轴代入直线BC的解析式即可求得.
(2)设直线MN的解析式为y=kx+b,依据E(1,2)的坐标即可表示出直线MN的解析式y=(2-b)x+b,根据直线MN的解析式和抛物线的解析式即可求得x2-bx+b-3=0,所以x1+x2=b,x1x2=b-3;根据完全平方公式即可求得=,所以当b=2时,|x1-x2|最小值=,因为b=2时,y=(2-b)x+b=2,所以直线MN∥x轴.
(3)由D(1,4),则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AOAP,从而求得OP的长,进而求得P点坐标.
由抛物线y=﹣x2+2x+3可知,C(0,3),
令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,
∴A(﹣1,0),B(3,0);
∴顶点x=1,y=4,即D(1,4);
∴DF=4
设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;
,解得,
∴解析式为;y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴E(1,2),
∴EF=2,
∴DE=DF﹣EF=4﹣2=2.
(2)设直线MN的解析式为y=kx+b,
∵E(1,2),
∴2=k+b,
∴k=2﹣b,
∴直线MN的解析式y=(2﹣b)x+b,
∵点M、N的坐标是的解,
整理得:x2﹣bx+b﹣3=0,
∴x1+x2=b,x1x2=b﹣3;
∵=, ,
∴当b=2时,|x1﹣x2|最小值=,
∵b=2时,y=(2﹣b)x+b=2
∴直线MN∥x轴.
(3)如图2,∵D(1,4),
∴tan∠DOF=4,
又∵tan∠α=4,
∴∠DOF=∠α,
∵∠DOF=∠DAO+∠ADO=∠α,
∵∠DAO+∠DPO=∠α,
∴∠DPO=∠ADO,
∴△ADP∽△AOD,
∴AD2=AOAP,
∵AF=2,DF=4,
∴AD2=AF2+DF2=20,
∴OP=19,
同理,当点P在原点左侧时,OP=17.
∴P1(19,0),P2(﹣17,0).
【题目】在一个不透明的袋子中装有仅颜色不同的20个小球,其中红球6个,黑球14个
(1)先从袋子中取出x(x>3)个红球后,再从袋子中随机摸出1个球,将“摸出黑球”,记为事件A.请完成下列表格.
事件A | 必然事件 | 随机事件 |
x的值 |
(2)先从袋子中取出m个红球,再放入2m个一样的黑球并摇匀,随机摸出1个球是黑球的概率是,求m的值.