题目内容

24、如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?
分析:(1)要证DE是⊙O的切线,必须证ED⊥OD,即∠EDB+∠ODB=90°
(2)要证AOED是平行四边形,则DE∥AB,D为AC中点,又BD⊥AC,所以△ABC为等腰直角三角形,所以∠CAB=45°.
解答:解:(1)连接OD与BD两点,
∵△BDC是Rt△,且E为BC中点,
∴∠EDB=∠EBD.(2分)
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.

(2)∵∠EDO=∠ABC=90°,若要AOED是平行四边形,则DE∥AB,D为AC中点
又∵BD⊥AC
∴△ABC为等腰直角三角形
∴∠CAB=45°,
所以当∠CAB为45°时,四边形AOED是平行四边形.
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网