题目内容
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.
答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;
证明:(以△BDE≌△FEC为例)
∵△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∵CD=CE,
∴△EDC是等边三角形,
∴∠EDC=∠DEC=60°,
∴∠BDE=∠FEC=120°,
∵CD=CE,
∴BC-CD=AC-CE,
∴BD=AE,
又∵EF=AE,
∴BD=FE,
在△BDE与△FEC中,
∵
,
∴△BDE≌△FEC(SAS).
证明:(以△BDE≌△FEC为例)
∵△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∵CD=CE,
∴△EDC是等边三角形,
∴∠EDC=∠DEC=60°,
∴∠BDE=∠FEC=120°,
∵CD=CE,
∴BC-CD=AC-CE,
∴BD=AE,
又∵EF=AE,
∴BD=FE,
在△BDE与△FEC中,
∵
|
∴△BDE≌△FEC(SAS).
练习册系列答案
相关题目