题目内容
【题目】如图,在□ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连结PO并延长交BC于点Q,设运动时间为t(0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
备用图
【答案】(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上
【解析】
(1)根据ASA证明△APO≌△CQO,再根据全等三角形的性质得出AP=CQ=t,则BQ=5-t,再根据平行四边形的判定定理可知当AP∥BQ,AP=BQ时,四边形ABQP是平行四边形,即t=5-t,求出t的值即可求解;
(2)过A作AH⊥BC于点H,过O作OG⊥BC于点G,根据勾股定理求出AC=4,由Rt△ABC的面积计算可求得AH=,利用三角形中位线定理可得OG=,再根据四边形OQCD的面积y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入数值计算即可得y与t之间的函数关系式;
(3)如图2,若OE是AP的垂直平分线,可得AE=AP=,∠AEO=90°,根据勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出关于t的方程,解方程即可求出t的值.
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5-t,∴t=,
∴当t=时,四边形ABQP是平行四边形;
(2) 图1
如图1,过A作AH⊥BC于点H,过O作OG⊥BC于点G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
图2
(3)存在.
如图2,∵OE是AP的垂直平分线,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴当t=时,点O在线段AP的垂直平分线上.
故答案为:(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上.
【题目】扬州某中学七年级一班 40 名同学第二次为四川灾区捐款,共捐款 2000 元,捐款情况如下表:
捐款(元) | 20 | 40 | 50 | 100 |
人数 | 10 | 8 |
表格中捐款 40 元和 50 元的人数不小心被墨水污染已看不清楚、若设捐款 40 元的有 x 名同学,捐款 50 元的有y 名同学,根据题意,可得方程组( )
A.B.
C.D.