题目内容

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.
(1)求过E点的反比例函数解析式.
(2)求出D点的坐标.
分析:(1)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,代入反比例函数的一般形式求其解析式即可;
(2)在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.
解答:解:(1)∵折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=AO=10,AB=8,BE=
AE2-AB2
=
102-82
=6,
∴CE=4,
∴E(4,8),
设过E点的反比例函数的解析式为y=
k
x

∴k=4×8=32,
∴过E点的反比例函数的解析式为y=
32
x


(2)在Rt△DCE中,DC2+CE2=DE2
∵DE=OD,
∴(8-OD)2+42=OD2
∴OD=5,
∴D(0,5).
点评:本题主要考查了反比例函数的综合知识,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网