题目内容
已知(y2+1)2+(y2+1)-6=0,那么y2+1=________.
在一次翻牌子游戏中,组织者制作了个牌子,其中有个牌子的背面注明有奖,其余牌子的背面注明无奖,参与者有三次翻牌的机会,且翻过的牌不能再翻,有一位参与者已翻牌,一次获奖,一次不获奖,那么他第三次翻牌获奖的概率是________.
求证:不论m为任何实数,关于x的一元二次方程x2+(4m+1)x+2m-1=0总有实数根.
如图,在平面直角坐标系中,已知矩形的三个顶点,,,以为顶点的抛物线过点,动点从点出发,以每秒个单位的速度沿线段向点运动,运动时间为秒,过点作轴交抛物线于点,交于点.
直接写出点的坐标,并求出抛物线的解析式;
当为何值时,的面积最大?最大值为多少?
点从点出发,以每秒个单位的速度沿线段向点运动,当为何值时,在线段上存在点,使以,,,为顶点的四边形为菱形?
(本题满分8分)已知、是方程的两实数根,求的值.
用配方法解方程方程可变形为( )
A. B. C. D.
以为顶点的二次函数是( )
A. B.
C. D.
如图所示,在Rt△ABC中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:AB=1:2,则点B的坐标为( )
A. (2,0) B. (12,0) C. (10,0) D. (5,0)
计算:
(1)﹣15+(﹣8)﹣(﹣11)﹣12
(2)
(3)
(4)﹣23+[(﹣4)2﹣(1﹣32)×3]