题目内容

【题目】如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于( ).

A.a:b:c
B.
C.sinA:sinB:sinC
D.cosA:cosB:cosC

【答案】D
【解析】作出△ABC的外接圆,连接OA、OB、OC,

由垂径定理和圆周角定理可得∠B= ∠AOC=∠AOE,同理可知∠A=∠BOD、∠C=∠AOF,若设⊙O的半径为R,

则:OD=Rcos∠BOD=Rcos∠A,

OE=Rcos∠AOE=Rcos∠B,

OF=Rcos∠BOF=Rcos∠C,

故OD:OE:OF=cos∠A:cos∠B:cos∠C.

所以答案是:D.


【考点精析】关于本题考查的垂径定理和圆周角定理,需要了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网