题目内容
【题目】如图,D是△ABC的BC边上的一点,∠B =40°,∠ADC=80°.
(1)求证:AD=BD;
(2)若∠BAC=70°,判断△ABC的形状,并说明理由.
【答案】(1)证明见解析;(2)△ABC是等腰三角形,理由见解析.
【解析】试题解析:(1)由AD=BD,根据等边对等角的性质,可得∠B=∠BAD,又由三角形外角的性质,即可求得∠B的度数;
(2)由∠BAC=70°,易求得∠C=∠BAC=70°,根据等角对等边的性质,可证得△ABC是等腰三角形.
试题解析:(1)证明:∵∠ADC=∠B+∠BAD,而∠ADC=80°,∠B =40°,
∴∠BAD=80°-40°=40°,
∴∠B=∠BAD,
∴AD=BD.
(2)△ABC是等腰三角形.
理由:∵∠B=40°,∠BAC=70°,
∴∠C=180°﹣∠B﹣∠BAC=70°,
∴∠C=∠BAC,
∴BA=BC,
∴△ABC是等腰三角形.
练习册系列答案
相关题目