题目内容

【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.

(1)求证:ABE≌△EGF;

(2)若AB=2,S△ABE=2S△ECF,求BE.

【答案】(1)证明见解析;(2)1

【解析】

试题分析:(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;

(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出SEGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.

试题解析:(1)证明:EPAE,∴∠AEB+GEF=90°,又∵∠AEB+BAE=90°,∴∠GEF=BAE,又FGBC,∴∠ABE=EGF=90°,在ABE与EGF中,∵∠ABE=EGF,BAE=GEF,AE=EF∴△ABE≌△EGF(AAS);

(2)解:∵△ABE≌△EGF,AB=2,AB=EG=2,S△ABE=S△EGFS△ABE=2S△ECFSEGF=2S△ECFEC=CG=1,四边形ABCD是正方形,BC=AB=2,BE=2﹣1=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网