题目内容
【题目】如图,线段AB 是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD 上任意一点,AH=2,CH=4.
(1)求⊙O 的半径r 的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O 于点 N,连接BN交CE于点 F,求HEHF的值.
【答案】(1)5;(2);(3)16
【解析】(1)在Rt△COH中,利用勾股定理即可解决问题;
(2)只要证明∠CMD=△COA,求出sin∠COA即可;
(3)由△EHM∽△NHF,推出,推出HEHF=HMHN,又HMHN=AHHB,推出HEHF=AHHB,由此即可解决问题.
(1)连接OC,
在Rt△COH中,
∵CH=4,OH=r-2,OC=r.
∴ (r-2)2+42=r2.
∴ r=5;
(2)∵弦CD与直径AB垂直,
∴,
∴ ∠AOC=∠COD,
∴∠CMD=∠COD,
∴ ∠CMD=∠AOC,
∴sin∠CMD=sin∠AOC,
在Rt△COH中,
∴sin∠AOC=,
∴sin∠CMD=;
(3)连接AM,
∴∠AMB=90°,
在Rt△AMB中,
∴∠MAB+∠ABM=90°,
在Rt△EHB中,
∴∠E+∠ABM=90°,
∴∠MAB=∠E,
∵ ,
∴∠MNB=∠MAB=∠E,
∵∠EHM=∠NHF,
∴△EHM∽△NHF,
∴,
∴HEHF=HMHN,
∵AB与MN交于点H,
∴HMHN=HAHB=HA(2r-HA)=2×(10-2)=16,
∴HEHF=16.
练习册系列答案
相关题目