题目内容
【题目】如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.
(1)求证:△DAF≌△ABE;
(2)求∠AOD的度数;
(3)若AO=4,DF=10,求的值.
【答案】(1)见解析;(2);(3)tan∠ADF的值为.
【解析】
(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,即可得出结论;
(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.
(3)根据(2)得到AO2=OF·OD,再设OF=x,DO=10-x,求出x即可解答
(1)在正方形ABCD中,DA=AB,,
又AF=BE
≌ (SAS)
(2)由(1)得 ≌ ,
ADF=BAE,
又 BAE+DAO=,ADF+DAO=
(3)由(2)得∠AOD=900 ∴△AOF∽△DOA ∴AO2=OF·OD
设OF=x,DO=10-x ∴x(10-x)=16 解得x=2或x=8(舍去)
∴tan∠ADF=
∴tan∠ADF的值为.
练习册系列答案
相关题目