题目内容
判定两个直角三角形全等的方法有______________________________.
计算:23-=____.
如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.
已知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.
如图,Rt△ABC中,∠C=90°,AC=8,BC=4,PQ=AB,点P与点Q分别在AC和AC的垂线AD上移动,则当AP=_______时,△ABC≌△APQ.
现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
(1)设运送这批货物的总费用为万元,这列货车挂A型车厢节,试写出与之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪种方案运费最省,最少运费为多少元?
如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式的解集是______________.
若a-b>a,a+b<b,则有( ).
A. ab<0 B. >0 C. a+b>0 D. a-b<0
如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为( )
A. (﹣1, ) B. (﹣1, )或(1,﹣) C. (﹣1,﹣) D. (﹣1,﹣)或(﹣,1)