题目内容
【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1)请你判断DA与CE的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数.
【答案】(1)AD∥EC,(2)55°
【解析】
试题分析:(1)根据平行线的性质推出AB∥CD,推出∠2=∠ADC,求出∠ADC+∠3=180°,根据平行线的判定推出即可;
(2)求出∠ADC度数,求出∠2=∠ADC=35°,∠FAD=∠AEC=90°,代入∠FAB=∠FAD-∠2求出即可.
试题解析:(1)AD∥EC,
理由是:∵∠1=∠BDC,
∴AB∥CD,
∴∠2=∠ADC,
又∵∠2+∠3=180°,
∴∠ADC+∠3=180°,
∴AD∥EC.
(2)∵DA平分∠BDC,
∴∠ADC=,
∴∠2=∠ADC=35°,
∵CE⊥AE,AD∥EC,
∴∠FAD=∠AEC=90°,
∴∠FAB=∠FAD-∠2=90°-35°=55°.
练习册系列答案
相关题目