题目内容
28、如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又∵∠BOD是△POD的外角,∴∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.
若将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何关系?请证明你的结论;
若将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何关系?请证明你的结论;
分析:延长BP交CD于点O,根据两直线平行,内错角相等可得∠B=∠POD,再利用三角形的一个外角等于与它不相邻的两个内角的和即可得解.
解答:解:图②中,∠BPD=∠B+∠D.
理由如下:
延长BP交CD于点O,
∵AB∥CD,
∴∠B=∠POD,
在△POD中,∠BPD=∠POD+∠D,
∴∠BPD=∠B+∠D.
理由如下:
延长BP交CD于点O,
∵AB∥CD,
∴∠B=∠POD,
在△POD中,∠BPD=∠POD+∠D,
∴∠BPD=∠B+∠D.
点评:本题考查了两直线平行,内错角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,读懂题目信息,理清求解思路是解题的关键.
练习册系列答案
相关题目