题目内容

【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.

(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.

【答案】
(1)

解:AP=BQ.

理由:∵四边形ABCD是正方形,

∴AB=BC,∠ABC=∠C=90°,

∴∠ABQ+∠CBQ=90°.

∵BQ⊥AP,∴∠PAB+∠QBA=90°,

∴∠PAB=∠CBQ.

在△PBA和△QCB中,

∴△PBA≌△QCB,

∴AP=BQ;


(2)

解:过点Q作QH⊥AB于H,如图.

∵四边形ABCD是正方形,

∴QH=BC=AB=3.

∵BP=2PC,

∴BP=2,PC=1,

∴BQ=AP= = =

∴BH= = =2.

∵四边形ABCD是正方形,

∴DC∥AB,

∴∠CQB=∠QBA.

由折叠可得∠C′QB=∠CQB,

∴∠QBA=∠C′QB,

∴MQ=MB.

设QM=x,则有MB=x,MH=x﹣2.

在Rt△MHQ中,

根据勾股定理可得x2=(x﹣2)2+32

解得x=

∴QM的长为


(3)

解:过点Q作QH⊥AB于H,如图.

∵四边形ABCD是正方形,BP=m,PC=n,

∴QH=BC=AB=m+n.

∴BQ2=AP2=AB2+PB2

∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2

∴BH=PB=m.

设QM=x,则有MB=QM=x,MH=x﹣m.

在Rt△MHQ中,

根据勾股定理可得x2=(x﹣m)2+(m+n)2

解得x=m+n+

∴AM=MB﹣AB=m+n+ ﹣m﹣n=

∴AM的长为


【解析】(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)= ,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网