题目内容

【题目】如图,在四边形ABCD中,∠A=C=45°,ADB=ABC=105°.

(1)若AD=2,求AB;

(2)若AB+CD=2+2,求AB.

【答案】(1)AB=;(2)AB=+1.

【解析】试题分析:(1)根据∠A=∠C=45°,∠ADB=∠ABC=105°,得到∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADEBCF为等腰直角三角形,即可求出AE的长,利用锐角三角函数可求得BE的长从而得到AB的长

(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示ABCD即可得到答案

(1)过A点作DEAB,过点BBFCD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADEBCF为等腰直角三角形,AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=

(2)设DE=x,则AE=xBE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF=BD=x,∴BF===,∴CF=,∵AB=AE+BE=CD=DF+CF=AB+CD=,∴AB=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网