题目内容
【题目】关于x的一元二次方程有实数根.
(1)求m的取值范围;
(2)当m为正整数时,取一个合适的值代入求出方程的解.
【答案】(1)m≤3,m≠2;(2)当m=3时,x1=x2=1
【解析】
(1)根据方程有实数根可得△≥0,列式即可得到结果.
(2)根据(1)可得m的取值范围,根据m是正整数的要求分别计算即可.
解:(1)∵关于x的一元二次方程(m-2)x2-2x+1=0有实数根,
∴△=(-2)2-4(m-2)=4-4m+8=12-4m.
∵12-4m≥0,
∴m≤3,m≠2.
(2)∵m≤3且m≠2,∴m=1或3,
∴当m=1时,原方程为-x2-2x+1=0. x1=-1-,x2=-1+.
当m=3时,原方程为x2-2x+1=0. x1=x2=1.
练习册系列答案
相关题目