题目内容
【题目】已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;
(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.
【答案】
(1)解:连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)解:如图②,连接BF,
∵AB是⊙O的直径,
∴∠AFB=90°,
∴∠BAF+∠B=90°,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四边形ABFE是圆的内接四边形,
∴∠AEF+∠B=180°,
∴∠ADE+∠DAE+∠B=180°,
故∠DAE+∠B=90°,
∴∠BAF=∠DAE.
【解析】(1)连接OC,根据切线的性质知OC⊥CD,然后根据同一平面内,垂直于同一直线的两条直线平行得AD∥OC,根据二直线平行,内错角相等得出∠DAC=∠ACO;根据等边对等角得∠ACO=∠CAO,进而得∠DAC=∠CAO,故AC平分∠DAB;
(2)如图②,连接BF, 根据直径所对的圆周角是直角得∠AFB=90°,根据三角形的内角和得∠BA+∠B=90°,根据三角形的外角定理得∠AEF=∠ADE+∠DAE,根据圆的内接四边形对角互补得∠AEF+∠B=180°,即∠ADE+∠DAE+∠B=180°,故∠DAE+∠B=90°,根据同角的余角相等得出∠BAF=∠DAE.
【考点精析】解答此题的关键在于理解余角和补角的特征的相关知识,掌握互余、互补是指两个角的数量关系,与两个角的位置无关,以及对平行线的判定与性质的理解,了解由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
【题目】某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
进价元千克 | 售价元千克 | |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?