题目内容
【题目】△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
【答案】(1)证明见解析;(2);(3)(1)中结论不成立.
【解析】试题分析:(1)连接AD,利用等腰三角形中的三线合一,即可证得AD=BD=DC=BC,∠ADB=∠ADC=90°,又由同角的余角相等,证得∠5=∠4,则可得△BDE≌△ADF,则AF=BE;
(2)由(1)可得AF=BE,AE=CF,又由勾股定理,即可得到;
(3)可证得有两角对应相等,所以可得△BDE∽△ADF,利用三角函数即可求得比值.
(1)如图,连接AD,
∵AB=AC,∠BAC=90°,点D是BC的中点
∴AD=BD=DC=BC,∠ADB=∠ADC=90°
∴∠B=∠C=∠1=∠2=45°
∴∠3+∠5==90°
∵∠3+∠4==90°
∴∠5=∠4
∵BD=AD
∴△BDE≌△ADF.
∴BE=AF;
(2)根据(1)可得BE=AF,
所以AB-BE=AC-AF,即AE=FC,
∵∠BAC=90°,
∴,
∴
(3)(1)中的结论BE=AF不成立.
∵∠B=30°,AD⊥BC于点D,∠BAC=90°,
∴∠3+∠5==90°, ∠B+∠1==90°.
∵∠3+∠4==90°,∠1+∠2==90°
∴∠B="∠2" , ∠5=∠4.
∴△BDE∽△ADF.
∴.