题目内容
【题目】如图,直线AB与x轴交于点A(4,0),与y轴交于点B(0,-4),若点E在线段AB上,OE⊥OF,且OE=OF,连接AF.
(1)猜想线段AF与BE之间的关系,并证明;
(2)过点O作OM⊥EF垂足为D,OM分别交AF、BA的延长线于点C、M若BE=,求CF的长.
【答案】(1) AF=BE,证明见解析 (2)CF=
【解析】
(1)由已知可得:∠FOE=∠AOB=90°,减去公共角∠AOE可得:∠FOA=∠EOB,又因为OE=OF,OA=OB,可证FOAEOB,即可得AF与BE相等.
(2)由(1)可得∠FAO=∠OBA=∠OAB=45°,可得∠FAE=90°,由A,B坐标可求得AB=4,又AF=BE=,得AE的长.连接EC,根据等腰三角形的“三线合一”可得OM垂直平分EF,则FC=EC,设FC=EC=x,则AC=,在直角三角形AEC中,根据勾股定理列出方程,代入数值即可求得CF的长.
(1) AF=BE,证明:
∵直线AB与x轴交于点A(4,0),与y轴交于点B(0,-4)
∴OA=OB=4
∵OE⊥OF
∴∠FOE=∠AOB=90°
∴∠FOE-∠AOE=∠AOB-∠AOE
即∠FOA=∠EOB
在FOA和EOB中
∴FOAEOB(SAS)
∴AF=BE
(2)连接EC.
∵OA=OB=4,∠AOB=90°
∴∠OBA=∠OAB=45°,AB=4
由(1)得:FOAEOB
∴∠FAO=∠OBA=∠OAB=45°,AF=BE=
∴∠FAE=90°,AE=
∵OE=OF, OM⊥EF
∴OM垂直平分EF
∴FC=EC
设FC=EC=x,则AC=
根据勾股定理得:
解得
∴CF=
练习册系列答案
相关题目