题目内容
二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是( )
A.k<-3 | B.k>-3 | C.k<3 | D.k>3 |
D.
试题分析:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,
∴此时y=|ax2+bx+c|=ax2+bx+c,
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,
∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,
∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,
∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,
∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,
∴y=|ax2+bx+c|的图象如图,
∵观察图象可得当k≠0时,
函数图象在直线y=3的上方时,纵坐标相同的点有两个,
函数图象在直线y=3上时,纵坐标相同的点有三个,
函数图象在直线y=3的下方时,纵坐标相同的点有四个,
∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,
则函数图象应该在y=3的上边,
故k>3.
故选D.
练习册系列答案
相关题目