题目内容
如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交⊙O于点D.
(1)BD是⊙O的切线吗?为什么?
(2)若AC=10,求线段BC的长度.
(1)BD是⊙O的切线吗?为什么?
(2)若AC=10,求线段BC的长度.
(1)BD是⊙O的切线,
证明:∵∠BAD=∠B=30°,
∴∠ADB=180°-30°-30°=120°,
∵AO=DO,
∴∠A=∠ADO=30°,
∴∠ODB=120°-30°=90°,
∴BD是⊙O的切线;
(2)∵AC=10,
∴CO=5,
∴DO=5,
∵∠B=30°,
∴BO=2DO=10,
在Rt△OBD中:BD=
=
=5
.
证明:∵∠BAD=∠B=30°,
∴∠ADB=180°-30°-30°=120°,
∵AO=DO,
∴∠A=∠ADO=30°,
∴∠ODB=120°-30°=90°,
∴BD是⊙O的切线;
(2)∵AC=10,
∴CO=5,
∴DO=5,
∵∠B=30°,
∴BO=2DO=10,
在Rt△OBD中:BD=
BO2-DO2 |
100-25 |
3 |
练习册系列答案
相关题目