题目内容
【题目】如图,△ABC的中线BE,CF相交于点G,P、Q分别是BG、CG的中点.
(1)求证:四边形EFPQ是平行四边形;
(2)请直接写出BG与GE的数量关系.(不要求证明).
【答案】(1)证明见解析;(2)BG=2GE.
【解析】试题分析:(1)根据BE,CF是△ABC的中线可得EF是△ABC的中位线,P,Q分别是BG,CG的中点可得PQ是△BCG的中位线,根据三角形中位线定理可得EF∥BC且EF=BC,PQ∥BC且PQ=BC,进而可得EF∥PQ且EF=PQ,根据一组对边平行且相等的四边形是平行四边形可得结论;
(2)根据平行四边形的性质可得GE=GP,再根据P是BG的中点可得BG=2PG,利用等量代换可得答案.
试题解析:(1)∵BE、CF是△ABC的中线,∴EF是△ABC的中位线,
∴EF∥BC且EF=BC,
∵P、Q分别是BG、CG的中点,∴PQ是△BCG的中位线,
∴PQ∥BC且PQ=BC,
∴EF∥PQ且EF=PQ,
∴四边形EFPQ是平行四边形;
(2)BG=2GE,
∵四边形EFPQ是平行四边形,∴GP=GE,
∵P是BG中点,∴BG=2PG,
∴BG=2GE.
练习册系列答案
相关题目