题目内容
如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.
(1)求EF的长度;
(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;
(3)连接FG,试说明:四边形CEFG是菱形.

(1)求EF的长度;
(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;
(3)连接FG,试说明:四边形CEFG是菱形.

(1)∵BE平分∠ABC,∠ACB=90°,EF⊥AB,垂足为F,
∴EF=CE.
在△BFE与△BCE中,∠C=∠BFE=90°,
,
∴△BFE≌△BCE,
∴BF=BC=8.
∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB=10,
∴AF=AB-BF=2.
设EF=x,则CE=x,AE=6-x,
在直角△AEF中,由勾股定理,得AE2=EF2+AF2,
∴(6-x)2=x2+22,
解得x=
;
(2)∵在△BCE中,∠CEB=90°-∠CBE,
∠CGE=∠DGB=90°-∠DBG,
∠CBE=∠DBG,
∴∠CEB=∠CGE,
∴CE=CG;
(3)∵CD⊥AB,EF⊥AB,∴CD∥EF,
∵EF=CE,CE=CG,∴EF=CG,
∴四边形CEFG是平行四边形,
又∵CE=CG,
∴?CEFG是菱形.(3分)
∴EF=CE.
在△BFE与△BCE中,∠C=∠BFE=90°,
|
∴△BFE≌△BCE,
∴BF=BC=8.
∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB=10,
∴AF=AB-BF=2.
设EF=x,则CE=x,AE=6-x,
在直角△AEF中,由勾股定理,得AE2=EF2+AF2,
∴(6-x)2=x2+22,
解得x=
8 |
3 |

∠CGE=∠DGB=90°-∠DBG,
∠CBE=∠DBG,
∴∠CEB=∠CGE,
∴CE=CG;

∵EF=CE,CE=CG,∴EF=CG,
∴四边形CEFG是平行四边形,
又∵CE=CG,
∴?CEFG是菱形.(3分)

练习册系列答案
相关题目