题目内容
【题目】一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为 cm.
【答案】3
【解析】
试题分析:连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边的倍.已知边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.
解:连接OC,并过点O作OF⊥CE于F,
且△ABC为等边三角形,边长为4,
故高为2,即OC=,
又∠ACB=60°,故有∠OCF=30°,
在Rt△OFC中,可得FC=OCcos30°=,
OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3.
故答案为:3.
练习册系列答案
相关题目