题目内容

23、如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.
分析:本题中要证AC⊥EG也就是证∠CGE+∠GCA=90°,我们发现∠GBA+∠ACB=90°,因此证明∠CGE=∠ACB就是问题的关键,我们可通过证明三角形ABC和ECG全等来实现.
解答:证明:∵GC∥BH,DC∥AB,
∴∠HBA=∠GCD,
∴90°+∠HBA=∠GCD+90°,
∴∠GCE=∠ABC,
又∵AB=DC=EC,BC=CG,
∴△ABC≌△ECG(SAS),
∴∠CGE=∠ACB,
∵∠ACB+∠GCA=90°,
∴∠CGE+∠GCA=90°,
∴AC⊥EG.
点评:本题主要考查了正方形、平行四边形的性质,通过全等三角形来得出角相等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网