题目内容
【题目】如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB' ,设点P的运动时间为t(s).
(1)若AB=2.
①如图2,当点B' 落在AC上时,求t的值;
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t值?若不存在,请说明理由.
(2)若四边形ABCD是正方形,直线PB'与直线CD相交于点M,当点P不与点C重合时,求证:∠PAM=45°.
【答案】(1)①t=2-4;②存在,t=2;t=6;t=2;(2)详见解析
【解析】
(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出即可解决问题.
②分三种情形分别求解即可:如图2-1中,当∠PCB′=90°时.如图2-2中,当∠PCB′=90°时.如图2-3中,当∠CPB′=90°时.
(2)如图3-1中,当t<3时,由四边形ABCD是正方形,证明△MDA≌△MB’A,即可得到结论,如图3-2中,当t>3时,设∠APB=x,利用全等三角形的性质,翻折不变性即可解决问题.
解:(1)①如图1中,
∵四边形ABCD是矩形,
∴∠ABC=90°, ∴
∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,
∴△PCB′∽△ACB,
∴
∴
∴
∴
②如图2-1中,当∠PCB′=90°时,
∵四边形ABCD是矩形, ∴∠D=90°,AB=CD= AD=BC=3,
∴
∴
在Rt△PCB′中,∵
∴
∴
如图2-2中,当∠PCB′=90°时,
在Rt△ADB′中,,
在Rt△PCB′中则有:
解得t=6.
如图2-3中,当∠CPB′=90°时,则
则四边形为正方形,
综上所述,满足条件的t的值为2s或6s或s.
(2)如图3-1,当t<3时,
又∵翻折,
∴∠1=∠2,AB=AB’,∠B=∠AB’P
∵四边形ABCD是正方形,
∴AD=AB=AB’ ,∠D=∠B=∠AB’P= 90°
∵AM=AM
∴△MDA≌△MB’A(HL)
∴∠3=∠4
∴∠2+∠3=45°,
即∠PAM=45°
(图3-1)
如图3-2,当t>3时,设∠APB=x
∴∠PAB=90°-x
∴∠DAP=x
同理:△MDA≌△MB’A(HL)
∴∠B’AM=∠DAM
∵翻折
∴∠PAB=∠PAB’=90°-x
∴∠DAB’=∠PAB’-∠DAP=90°-2x
∴∠DAM=∠DAB’=45°-x
∴∠MAP=∠DAM+∠PAD=45°
(图3-2)
【题目】如图,直线与轴交于点,与轴交于点(点与点不重合),抛物线经过点,抛物线的顶点为.
(1) °;
(2)求的值;
(3)在抛物线上是否存在点,能够使?如果存在,请求出点的坐标;如果不存在,请说明理由.
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,回答下列问题:
(1)补全数学成绩频数分布直方图;
(2)写出表中m、n的值;
(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).