题目内容
【题目】如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正确的有( )
A.2个
B.3个
C.4个
D.5个
【答案】C
【解析】解:连接OE,如图所示:
∵AD与圆O相切,DC与圆O相切,BC与圆O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,选项②正确;
在Rt△ADO和Rt△EDO中, ,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项①正确;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴ = ,即OD2=DCDE,选项⑤正确;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,
∠A=∠B=90°,
∴△AOD∽△BOC,
∴ = = = ,选项③正确;
同理△ODE∽△OEC,
∴ ,选项④错误;
故选C.
连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项①正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DECD,选项⑤正确;由△AOD∽△BOC,可得 = = = ,选项③正确;由△ODE∽△OEC,可得 ,选项④错误.
【题目】某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a=________,b=________;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.
【题目】小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:
规格(升/桶) | 价格(元/桶) | |
大桶装 | 18 | 225 |
小桶装 | 5 | 90 |
小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,
(1)小明爸预计墙面的粉刷需要乳胶漆多少升?
(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?
(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?