题目内容
【题目】已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.
(1)求抛物线的解析式;
(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;
(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
【答案】(1);(2)G点的坐标为(﹣1,4+)或(﹣1,4﹣);(3)存在,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).
【解析】
(1)根据抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),应用待定系数法,求出抛物线的解析式即可.
(2)首先作DM⊥抛物线的对称轴于点M,设G点的坐标为(﹣1,n),根据翻折的性质,可得BD=DG;然后分别求出点D、点M的坐标各是多少,以及BC、BD的值各是多少;最后在Rt△GDM中,根据勾股定理,求出n的值,即可求出G点的坐标.
(3)根据题意,分三种情况:①当CD∥EF,且点E在x轴的正半轴时;②当CD∥EF,且点E在x轴的负半轴时;③当CE∥DF时;然后根据平行四边形的性质,求出点F的坐标各是多少即可.
解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),
∴
解得
∴抛物线的解析式是:
(2)如图①,作DM⊥抛物线的对称轴于点M,,
设G点的坐标为(﹣1,n),
由翻折的性质,可得BD=DG,
∵B(4,0),C(0,8),点D为BC的中点,
∴点D的坐标是(2,4),
∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,
∵B(4,0),C(0,8),
∴BC= =4 ,
∴BD=2,
在Rt△GDM中,
32+(4﹣n)2=20,
解得n=4±,
∴G点的坐标为(﹣1,4+)或(﹣1,4﹣).
(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.
①当CD∥EF,且点E在x轴的正半轴时,如图②,
由(2),可得点D的坐标是(2,4),
设点E的坐标是(c,0),点F的坐标是(﹣1,d),
则
解得
∴点F的坐标是(﹣1,4),点E的坐标是(1,0).
②当CD∥EF,且点E在x轴的负半轴时,如图③,
由(2),可得点D的坐标是(2,4),
设点E的坐标是(c,0),点F的坐标是(﹣1,d),
则
解得
∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).
③当CE∥DF时,如图④,,
由(2),可得点D的坐标是(2,4),
设点E的坐标是(c,0),点F的坐标是(﹣1,d),
则
解得
∴点F的坐标是(﹣1,12),点E的坐标是(3,0).
综上,可得
抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,
点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).
【题目】为了了解某小区青年对“高铁”、“扫码支付”、“网购”和“共享单车”新四大发明的喜爱程度,随机调查该小区一部分青年(每名青年只能选一个),并将调查结果制成如图所示统计表与条形统计图.
青年最喜爱的新四大发明人数统计表
节目 | 人数(名) | 百分比 |
共享单车 | 5 | |
扫码支付 | 15 | |
网购 | ||
高铁 | 10 |
青年最喜爱的新四大发明人数条形统计图
(1)计算的值 ;
(2)请补全条形统计图;
(3)在被调查喜爱“共享单车”青年中,小明一周内使用共享单车的次数分别为:1,3,5,12,,若整数是这组数据的中位数,直接写出该组数据的平均数.
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.